
Source Map Revision 3 Proposal
Better bidirectional mapping.
John Lenz, Google
Nick Fitzgerald, Mozilla
February 11, 2011

Table of Contents
Source Map Revision 3 Proposal

Table of Contents
Document Revisions
License
Background
Terminology
Revision 3 Format

General Goals
Proposed Format

Resolving Sources
Encoding
Compression
Extensions

Known Extensions
Notes
Index map: supporting post processing

Conventions
Source Map Naming
Linking generated code to source maps
Linking eval’d code to named generate code

Language Neutral Stack Mapping Notes
Multi-level Mapping Notes
JSON over HTTP Transport

Document Revisions
April 12, 2011 John Lenz Initial Revision

April 15, 2011 John Lenz Updates to reflect prototype

July 20, 2011 John Lenz Removed “lineCount” field, remove
“Combined Map” section

August 18, 2011 John Lenz Draft

May 2, 2012 John Lenz HTTP header and CC-BY-SA license

July 30, 2012 John Lenz Modified recommended HTTP header
name.

August 20, 2012 John Lenz Add CSS linkage recommendation

October 24, 2012 John Lenz Add clarifying section on source
locations.

February 19, 2013 John Lenz Add “sourcesContent” line to support
self contained source maps.
Added note regarding using data uri to
load source maps.

May 16, 2013 John Lenz Updated linking convention to use #
instead of @. @ conflicts with internet
explorer’s conditional code

November 18, 2013 John Lenz Noted that “file” is an optional field.
Minor typographical corrections

License

This work is licensed under a ​Creative Commons Attribution-ShareAlike 3.0 Unported License​.

Discussion

To discuss or propose changes to this specification, please use the dev-js-sourcemap mailing
list: ​https://lists.mozilla.org/listinfo/dev-js-sourcemap

Background
The original source map format (v1) was created by Joseph Schorr for use by Closure Inspector
to enable source level debugging of optimized JavaScript code (although the format itself is

http://creativecommons.org/licenses/by-sa/3.0/
https://lists.mozilla.org/listinfo/dev-js-sourcemap

language agnostic). However, as the size of the projects using the source maps expanded the
verbosity of the format started to be become a problem. The v2 was created trading some
simplicity and flexibility to reduce to overall size of the source map. Even with the changes
made with the v2 version of the format, the source map file size was limiting its usefulness. The
v3 format is based on suggestions made by podivilov@.

Related documents:
Revision 2 proposal

Terminology

Term Definition

Generated Code The code which is generated by the compiler.

Original Source The source code which has not been passed through the compiler.

Base 64 VLQ The ​VLQ​ is a​ ​Base64​ value, where the most significant bit (the 6th
bit) is used as the continuation bit, and the “digits” are encoded into
the string least significant first, and where the least significant bit of
the first digit is used as the sign bit.

Note: The values that can be represent by the VLQ Base64
encoded are limited to 32 bit quantities until some use case for
larger values is presented.

Source Mapping URL The URL referencing the location of a source map from the
generated code.

Revision 3 Format

General Goals
● Reduce the overall size to improve parse time, memory consumption, and download

time.
● Support source level debugging allowing bidirectional mapping
● Support server side stack trace deobfuscation

Proposed Format
1. {

https://docs.google.com/document/d/1xi12LrcqjqIHTtZzrzZKmQ3lbTv9mKrN076UB-j3UZQ/edit?hl=en_US
https://docs.google.com/a/google.com/document/pub?id=1toK5DDgHdslEACv_Q4wh4Tw5r540d3nGpFSzb1jaErU
http://en.wikipedia.org/wiki/Variable-length_quantity
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/wiki/Base64

2. "version" : 3,

3. "file": "out.js",

4. "sourceRoot": "",

5. "sources": ["foo.js", "bar.js"],

6. "sourcesContent": [null, null],

7. "names": ["src", "maps", "are", "fun"],

8. "mappings": "A,AAAB;;ABCDE;"

9. }

Line 1: The entire file is a single JSON object
Line 2: File version (always the first entry in the object) and must be a positive integer.
Line 3: An optional name of the generated code that this source map is associated with.
Line 4: An optional source root, useful for relocating source files on a server or removing
repeated values in the “sources” entry. This value is prepended to the individual entries in the
“source” field.
Line 5: A list of original sources used by the “mappings” entry.
Line 6: An optional list of source content, useful when the “source” can’t be hosted. The
contents are listed in the same order as the sources in line 5. “null” may be used if some original
sources should be retrieved by name.
Line 7: A list of symbol names used by the “mappings” entry.
Line 8: A string with the encoded mapping data.

The “mappings” data is broken down as follows:

● each group representing a line in the generated file is separated by a ”;”
● each segment is separated by a “,”
● each segment is made up of 1,4 or 5 variable length fields.

The fields in each segment are:

1. The zero-based starting column of the line in the generated code that the segment
represents. If this is the first field of the first segment, or the first segment following a
new generated line (“;”), then this field holds the whole base 64 VLQ. Otherwise, this
field contains a base 64 VLQ that is relative to the previous occurrence of this field. ​Note
that this is different than the fields below because the previous value is reset after every
generated line.

2. If present, an zero-based index into the “sources” list. This field is a base 64 VLQ relative
to the previous occurrence of this field, unless this is the first occurrence of this field, in
which case the whole value is represented.

3. If present, the zero-based starting line in the original source represented. This field is a
base 64 VLQ relative to the previous occurrence of this field, unless this is the first
occurrence of this field, in which case the whole value is represented. Always present if
there is a source field.

4. If present, the zero-based starting column of the line in the source represented. This field
is a base 64 VLQ relative to the previous occurrence of this field, unless this is the first

occurrence of this field, in which case the whole value is represented. Always present if
there is a source field.

5. If present, the zero-based index into the “names” list associated with this segment. This
field is a base 64 VLQ relative to the previous occurrence of this field, unless this is the
first occurrence of this field, in which case the whole value is represented.

Note: This encoding reduces the source map size 50% relative to the V2 format in tests
performed using Google Calendar.

Resolving Sources
If the sources are not absolute URLs after prepending of the “sourceRoot”, the sources are
resolved relative to the SourceMap (like resolving script src in a html document).

Encoding
For simplicity, the character set encoding is always UTF-8.

Compression
The file is allowed to be GZIP compressed. It is not expected that in-browser consumers of the
the source map will support GZIP compression directly but that they will consume an
uncompressed map that may be GZIP’d for transport.

Extensions
Additional fields may be added to the top level source map provided the fields begin with the
“x_” naming convention. It is expected that the extensions would be classified by the
organization providing the extension, such as “x_google_linecount”. Field names outside the
“x_” namespace are reserved for future revisions. It is ​recommended​ that fields be
namespaced by domain, i.e. x_com_google_gwt_linecount.

Known Extensions
“x_google_linecount” - the number of line represented by this source map.

Notes
Using file offsets were considered but rejected in favor of using line/column data to avoid
becoming misaligned with the original due to platform specific line endings.

Index map: supporting post processing
To support concatenating generated code and other common post processing, an alternate
representation of a map is supported:

1. {

2. version : 3,

3. file: “app.js”,

4. sections: [

5. { offset: {line:0, column:0}, url: “url_for_part1.map” }

6. { offset: {line:100, column:10}, map:

7. {

8. version : 3,

9. file: “section.js”,

10. sources: ["foo.js", "bar.js"],
11. names: ["src", "maps", "are", "fun"],
12. mappings: "AAAA,E;;ABCDE;"
13. }
14. }
15.],
16. }

The index map follow the form of the standard map
Line 1: The entire file is an JSON object.
Line 2: The version field. See the description of the standard map.
Line 3: The name field. See the description of the standard map.
Line 4: The sections field.

The “sections” field is an array of JSON objects that itself has two fields “offset” and a source
map reference. “offset” is an object with two fields, “line” and “column”, that represent the offset
into generated code that the referenced source map represents.
The other field must be either “url” or “map”. A “url” entry must be a URL where a source map
can be found for this section and the url is resolved in the same way as the “sources” fields in
the standard map. A “map” entry must be an embedded complete source map object. An
embedded map does not inherit any values from the containing index map.

The sections must be sorted by starting position and the represented sections may not overlap.

Conventions

Source Map Naming
Optionally, a source map will have the same name as the generated file but with a “.map”
extension. For example, for “page.js” a source map named “page.js.map” would be generated.

Linking generated code to source maps
While the source map format is intended to be language and platform agnostic, it is useful to
have a some conventions for the expected use-case of web server hosted javascript.

There are two suggested ways to link source maps to the output. The first requires server
support to add a HTTP header and the second requires an annotation in the source.

The HTTP header should supply the source map URL reference as:

SourceMap: <url>

Note: previous revisions of this document recommended a header name of “X-SourceMap”. This
is now deprecated; “SourceMap” is now expected.

The generated code may include a line at the end of the source, with the following form:

//# sourceMappingURL=<url>

Note: The prefix for this annotation was initially “//@” however this conflicts with Internet
Explorer’s Conditional Compilation and was changed to “//#”. It is reasonable for tools to also
accept “//@” but “//#” is preferred.

This recommendation works well for JavaScript, it is expected that other source files will have
other conventions:

CSS /*# sourceMappingURL=<url> */

Note: <url> is a URL as defined in RFC3986; in particular, characters outside the set permitted
to appear in URIs must be percent-encoded.
Note: <url> maybe a data URI. Using a data URI along with “sourcesContent” allow for a
completely self-contained source-map.

Regardless of the method used to retrieve the source mapping URL the same process is used
to resolve it, which is as follows:
 When the source mapping URL is not absolute, then it is relative to the generated code’s
“source origin”. The source origin is determined by one of the following cases:

● If the generated source is not associated with a script element that has a “src” attribute
and there exists a ​//# sourceURL ​ comment in the generated code, that comment
should be used to determine the source origin. Note: Previously, this was “//@
sourceURL”, as with “//@ sourceMappingURL”, it is reasonable to accept both but //# is
preferred.

● If the generated code is associated with a script element and the script element has a
“src” attribute, the “src” attribute of the script element will be the source origin.

● If the generated code is associated with a script element and the script element does not
have a “src” attribute, then the source origin will be the page’s origin.

● If the generated code is being evaluated as a string with the ​eval() ​ function or via ​new
Function() ​, then the source origin will be the page’s origin.

Linking eval’d code to named generate code
There is an existing convention that should be supported for the use of source maps with eval’d
code, it has the following form:

//@ sourceURL=foo.js

It is described here:
http://blog.getfirebug.com/2009/08/11/give-your-eval-a-name-with-sourceurl/

Language Neutral Stack Mapping Notes
Stack tracing mapping without knowledge of the source language is not covered by this
document.

Multi-level Mapping Notes
It is getting more common to have tools generate source from some ​DSL​ (templates) or to
compile CoffeeScript -> JavaScript -> minified JavaScript, resulting in multiple translations
before the final source map is created. This problem can be handled in one of two ways. The
easy but lossy way is to ignore the intermediate steps in the process for the purposes of
debugging, the source location information from the translation is either ignored (the
intermediate translation is considered the “Original Source”) or the source location information is
carried through (the intermediate translation hidden). The more complete way is to support
multiple levels of mapping: if the Original Source also has a source map reference, the user is
given the choice of using the that as well.

However, It is unclear what a “source map reference” looks like in anything other than
JavaScript. More specifically, what a source map reference looks like in a language that doesn’t
support JavaScript style single line comments. An HTTP header would address this, but is not
yet agreed upon.

JSON over HTTP Transport
XSSI​ attacks could potentially make source maps available to attackers by doing a direct script
src to a source map after overriding the Array constructor. This can be effectively prevented by
preprending a JavaScript syntax error to the start of the response.
Thus when delivering source maps over HTTP, servers may prepend a line starting with the
string “​)]}'​” to the sourcemap. If the response starts with this string clients must ignore the first
line.

http://blog.getfirebug.com/2009/08/11/give-your-eval-a-name-with-sourceurl/
http://en.wikipedia.org/wiki/Domain-specific_language
http://googleonlinesecurity.blogspot.com/2011/05/website-security-for-webmasters.html

